Products

View as  
 
  • XC2VP70-6FFG1517C is a low-cost field-programmable gate array (FPGA) developed by Intel Corporation, a leading semiconductor technology company. This device features 120,000 logic elements and 414 user input/output pins, making it suitable for a wide range of low-power and low-cost applications. It operates on a single power supply voltage ranging from 1.14V to 1.26V and supports various I/O standards such as LVCMOS, LVDS, and PCIe. The device has a maximum operating frequency of up to 415 MHz. The device comes in a small fine pitch ball grid array (FGBA) package with 484 pins, providing high pin-count connectivity for a variety of applications.

  • XC3S400AN-4FGG400I is a low-cost field-programmable gate array (FPGA) developed by Intel Corporation, a leading semiconductor technology company. This device features 120,000 logic elements and 414 user input/output pins, making it suitable for a wide range of low-power and low-cost applications. It operates on a single power supply voltage ranging from 1.14V to 1.26V and supports various I/O standards such as LVCMOS, LVDS, and PCIe. The device has a maximum operating frequency of up to 415 MHz. The device comes in a small fine pitch ball grid array (FGBA) package with 484 pins, providing high pin-count connectivity for a variety of applications.

  • XC3S1400AN-4FGG676C is a low-cost field-programmable gate array (FPGA) developed by Intel Corporation, a leading semiconductor technology company. This device features 120,000 logic elements and 414 user input/output pins, making it suitable for a wide range of low-power and low-cost applications. It operates on a single power supply voltage ranging from 1.14V to 1.26V and supports various I/O standards such as LVCMOS, LVDS, and PCIe. The device has a maximum operating frequency of up to 415 MHz. The device comes in a small fine pitch ball grid array (FGBA) package with 484 pins, providing high pin-count connectivity for a variety of applications.

  • XC3S50AN-4TQG144I is a low-cost field-programmable gate array (FPGA) developed by Intel Corporation, a leading semiconductor technology company. This device features 120,000 logic elements and 414 user input/output pins, making it suitable for a wide range of low-power and low-cost applications. It operates on a single power supply voltage ranging from 1.14V to 1.26V and supports various I/O standards such as LVCMOS, LVDS, and PCIe. The device has a maximum operating frequency of up to 415 MHz. The device comes in a small fine pitch ball grid array (FGBA) package with 484 pins, providing high pin-count connectivity for a variety of applications.

  • XC3S50AN-4TQG144C is a low-cost field-programmable gate array (FPGA) developed by Intel Corporation, a leading semiconductor technology company. This device features 120,000 logic elements and 414 user input/output pins, making it suitable for a wide range of low-power and low-cost applications. It operates on a single power supply voltage ranging from 1.14V to 1.26V and supports various I/O standards such as LVCMOS, LVDS, and PCIe. The device has a maximum operating frequency of up to 415 MHz. The device comes in a small fine pitch ball grid array (FGBA) package with 484 pins, providing high pin-count connectivity for a variety of applications.

  • XC3S400AN-4FGG400C is a low-cost field-programmable gate array (FPGA) developed by Intel Corporation, a leading semiconductor technology company. This device features 120,000 logic elements and 414 user input/output pins, making it suitable for a wide range of low-power and low-cost applications. It operates on a single power supply voltage ranging from 1.14V to 1.26V and supports various I/O standards such as LVCMOS, LVDS, and PCIe. The device has a maximum operating frequency of up to 415 MHz. The device comes in a small fine pitch ball grid array (FGBA) package with 484 pins, providing high pin-count connectivity for a variety of applications.

 ...5556575859...223 
X
We use cookies to offer you a better browsing experience, analyze site traffic and personalize content. By using this site, you agree to our use of cookies. Privacy Policy
Reject Accept